Vacuum Rabi splitting in a plasmonic cavity at the single quantum emitter limit

نویسندگان

  • Kotni Santhosh
  • Ora Bitton
  • Lev Chuntonov
  • Gilad Haran
چکیده

The strong interaction of individual quantum emitters with resonant cavities is of fundamental interest for understanding light-matter interactions. Plasmonic cavities hold the promise of attaining the strong coupling regime even under ambient conditions and within subdiffraction volumes. Recent experiments revealed strong coupling between individual plasmonic structures and multiple organic molecules; however, strong coupling at the limit of a single quantum emitter has not been reported so far. Here we demonstrate vacuum Rabi splitting, a manifestation of strong coupling, using silver bowtie plasmonic cavities loaded with semiconductor quantum dots (QDs). A transparency dip is observed in the scattering spectra of individual bowties with one to a few QDs, which are directly counted in their gaps. A coupling rate as high as 120 meV is registered even with a single QD, placing the bowtie-QD constructs close to the strong coupling regime. These observations are verified by polarization-dependent experiments and validated by electromagnetic calculations.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Large Vacuum Rabi Splitting in a Single ‎Nitride-Based Quantum WellMicrocavity

   Here, we report a theoretical detailed study of Vacuum Rabi Splitting (VRS) in the system of Nitride Single Quantum Well (SQW) within a semiconductor microcavity. Distributed Bragg Reflectors (DBRs) containing ZnTe/ZnSe multilayers including GaAs microcavity and  ( SQW at the center of microcavity, has been considered. Upper and lower exciton-polariton branches obtaine...

متن کامل

QuantuM Optics correlations on a chip

cavity quantum electrodynamics describes the behaviour of a quantum emitter inside an optical cavity, and is one of the few realizable experimental systems in which the coherent interaction between the emitter and the cavity mode can exceed dissipative and dephasing processes. Recent advances in this field include the observation of vacuum Rabi splitting1–3, interference4, upconversion5 and the...

متن کامل

Large vacuum Rabi splitting for a semiconductor nanogap cav - ity

Submitted for the MAR14 Meeting of The American Physical Society Large vacuum Rabi splitting for a semiconductor nanogap cavity MITSUHARU UEMOTO, HIROSHI AJIKI, Osaka University — A metallic nanogap utilizing surface plasmon excitation is one of the most popular designs of an optical antenna converting propagating radiation into enhanced fields at a nanoscale area (hotspot). Similarly, a nanoga...

متن کامل

Observation of Rabi splitting from surface plasmon coupled conduction state transitions in electrically excited InAs quantum dots.

We demonstrate strong coupling between a surface plasmon and intersublevel transitions in self-assembled InAs quantum dots. The surface plasmon mode exists at the interface between the semiconductor emitter structure and a periodic array of holes perforating a metallic Pd/Ge/Au film that also serves as the top electrical contact for the emitters. Spectrally narrowed quantum-dot electroluminesce...

متن کامل

Conditional spin squeezing of a large ensemble via the vacuum Rabi splitting.

We use the vacuum Rabi splitting to perform quantum nondemolition measurements that prepare a conditionally spin squeezed state of a collective atomic psuedospin. We infer a 3.4(6) dB improvement in quantum phase estimation relative to the standard quantum limit for a coherent spin state composed of uncorrelated atoms. The measured collective spin is composed of the two-level clock states of ne...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 7  شماره 

صفحات  -

تاریخ انتشار 2016